CBSE Solved Paper 2019

Mathematics Class X

General Instructions

(ii) All questions are compulsory.
(ii) The question paper consists of $\mathbf{3 0}$ questions divided into four sections- $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D.
(iii) Section A contains 6 questions of 1 mark each. Section B contains 6 questions of 2 marks each, Section C contains $\mathbf{1 0}$ questions of $\mathbf{3}$ marks each and Section D contains 8 questions of 4 marks each.
(iv) There is no overall choice. However, an internal choice has been provided in two questions of $\mathbf{1}$ mark each, two questions of $\mathbf{2}$ marks each, four questions of $\mathbf{3}$ marks each and three questiosns of 4 marks each. You have to attempt only one of the alternatives in all such questions.
(v) Use of calculators is not permitted.

Section A

1. Find the value of k for which the quadratic equation $\mathrm{kx}(\mathrm{x}-2)+6=0$ has two equal roots.
2. Find the number of terms in the A.P.: $18,15 \frac{1}{2}, 13, \ldots,-47$.
3. Evaluate :
$\frac{\tan 65^{\circ}}{\cot 25^{\circ}}$

OR

Express $\left(\sin 67^{\circ}+\cos 75^{\circ}\right)$ in terms of trigonometric ratios of the angle between 0° and 45°.
4. Let $\Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}$ and their areas be respctively, $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$. If $\mathrm{EF}=15.4 \mathrm{~cm}$, find BC.
5. Find the distance between the points (a, b) and $(-a,-b)$.
6. Find a rational number between $\sqrt{2}$ and $\sqrt{7}$.

> OR

Write the number of zeroes in the end of a number whose prime factorization is $2^{2} \times 5^{3} \times 3^{2} \times 17$.

Section B

7. How many multiples of 4 lie between 10 and 205?

OR
Determine the A.P. Whose third term is 16 and $7^{\text {th }}$ term exceeds the $5^{\text {th }}$ term by 12 .
8. The point R divides the line segment $A B$, where $A(-4,0)$ and $B(0,6)$ such that $A R=\frac{3}{4} A B$. Find the coordinates of R.
9. Use Euclid's division algorithm to find the HCF of 255 and 867 .
10. Three different coins are tossed simultaneously. Find the probability of getting exactly one head.
11. A card is drawn at random from a pack of 52 playing cards. Find the probability of drawing a card which is neither a spade nor a king.
12. Find the solution of the pair of equations:
$\frac{3}{\mathrm{x}}+\frac{8}{\mathrm{y}}=-1 ; \frac{1}{\mathrm{x}}-\frac{2}{\mathrm{y}}=2, \mathrm{x}, \mathrm{y} \neq 0$

> OR

Find the value (s) of k for which the pair of equations $\left\{\begin{array}{l}k x+2 y=3 \\ 3 x+6 y=10\end{array}\right.$ has a unique solution.

Section C

13. Prove that $(3+2 \sqrt{5})$ is an irrational number, given that $\sqrt{5}$ is an irrational number.
14. A train travels a distance of 480 km at a uniform speed. If the speed had been $8 \mathrm{~km} / \mathrm{hr}$ less, then it would have taken 3 hours more to cover the same distance. Find the usual speed of the train.
15. If α and β are the zeroes of the quadratic polynomial $f(x)=x^{2}-4 x+3$, find the value of $\left(\alpha^{4} \beta^{2}+\alpha^{2} \beta^{4}\right)$.
16. Prove that:
$(\sin \theta+1+\cos \theta)(\sin \theta-1+\cos \theta) \cdot \sec \theta \operatorname{cosec} \theta=2$

> OR
$\sqrt{\frac{\sec \theta-1}{\sec \theta+1}}+\sqrt{\frac{\sec \theta+1}{\sec \theta-1}}=2 \operatorname{cosec} \theta$
17. In what ratio does the point $\mathrm{P}(-4, \mathrm{y})$ divide the line segment joining the points $\mathrm{A}(-6,10)$ and B $(3,-8)$? Hence find the value of y.

OR

Find the value of p for which the points $(-5,1),(1, \mathrm{p})$ and $(4,-2)$ are collinear.
18. ABC is a right triangle in which $\angle \mathrm{B}=90^{\circ}$. If $\mathrm{AB}=8 \mathrm{~cm}$ and $\mathrm{BC}=6 \mathrm{~cm}$, find the diameter of the circle inscribed in the triangle.
19. In figure $1, \mathrm{BL}$ and CM are medians of a $\Delta \mathrm{ABC}$ right-angled at A . Prove that $4\left(\mathrm{BL}^{2}+\mathrm{CM}^{2}\right)$ $=5 \mathrm{BC}^{2}$.

Figure 1

OR
Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.
20. In figure 2, two concentric circles with centre O, have radii 21 cm and 42 cm . If $\angle \mathrm{AOB}=60^{\circ}$, find the area of the shaded region.

Figure 2
21. A cone of height 24 cm and radius of base 6 cm is made up of modelling clay. A child reshapes it in the form of a sphere. Find the radius of the sphere and hence find the surface area of this sphere.

OR

A farmer connects a pipe of internal diameter 20 cm from a canal into a cylindrical tank in his field which is 10 m in diameter and 2 m deep. If water flows through the pipe at the rate of $3 \mathrm{~km} / \mathrm{hr}$, in how much time will the tank be filled?
22. Calculate the mode of the following distribution:

Class:	$10-15$	$15-20$	$20-25$	$25-30$	$30-35$
Frequency:	4	7	20	8	1

Section D

23. Solve for x :
$\frac{1}{2 a+b+2 \mathrm{x}}=\frac{1}{2 \mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{2 \mathrm{x}} ; \mathrm{x} \neq 0, \mathrm{x} \neq \frac{-2 \mathrm{a}-\mathrm{b}}{2}, \mathrm{a}, \mathrm{b} \neq 0$

> OR

The sum of the areas of two squares is $640 \mathrm{~m}^{2}$. If the difference of their perimeters is 64 m , find the sides of the square.
24. If the sum of the first p terms of an A.P. is the same as the sum of its first q terms (where p $\neq q$), then show that the sum of first $(p+q)$ terms is zero
25. In $\triangle \mathrm{ABC}$ (Figure 3), $\mathrm{AD} \perp \mathrm{BC}$. Prove that
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}-2 \mathrm{BC} \times \mathrm{BD}$

Figure3
26. A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in $\mathrm{m} / \mathrm{min}$.
OR

There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.
27. Construct a triangle with sides 5 cm 6 cm and 7 cm and then another triangle whose sides are $\frac{3}{5}$ of the corresponding sides of the first triangle.
28. Prove that:
$\sin ^{8} \theta-\cos ^{8} \theta=\left(1-2 \cos ^{2} \theta\right)\left(1-2 \sin ^{2} \theta \cos ^{2} \theta\right)$
29. A container opened at the top and made up of a metal sheet, is in the form of a frustum of a cone of height 16 cm with radii of its lower and upper ends as 8 cm and 20 cm respectively. Find the cost of milk which can completely fill the container, at the rate of ₹ 50 per litre. Also find the cost of metal sheet used ot make the container, if it costs ₹ 10 per $100 \mathrm{~cm}^{2}$ (Take $\pi=3.14$)
30. Calculate the mean of the following frequency distribution :

Class :	$10-30$	$30-50$	$50-70$	$70-90$	$90-110$	$110-130$
Frequency:	5	8	12	20	3	2

OR
The following table gives production yield in kg per hectare of wheat of 100 farms of a village :

Production yield (kg/ hectare):	$40-45$	$45-50$	$50-55$	$55-60$	$60-65$	$65-70$
Number of farms:	4	6	16	20	30	24

Change the distribution to a 'more than type' distribution, and draw its ogive.

