# CBSE Solved Paper 2019

## Mathematics Class X

Time : 3 hrs

MM : 80

### General Instructions

- (ii) All questions are compulsory.
- (ii) The question paper consists of **30** questions divided into four sections— A, B, C and D.
- (iii) Section A contains 6 questions of 1 mark each. Section B contains 6 questions of 2 marks each, Section C contains 10 questions of 3 marks each and Section D contains 8 questions of 4 marks each.
- (iv) There is no overall choice. However, an internal choice has been provided in two questions of 1 mark each, two questions of 2 marks each, four questions of 3 marks each and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
- (v) Use of calculators is **not** permitted.

## Section A

- 1. Find the value of k for which the quadratic equation kx(x-2) + 6 = 0 has two equal roots.
  - (1)
- 2. Find the number of terms in the A.P.: 18,  $15\frac{1}{2}$ , 13,..., -47. (1)
- **3.** Evaluate :
  - $\frac{\tan 65^{\circ}}{\cot 25^{\circ}}$

OR

(1)

(1)

Express (sin  $67^{\circ} + \cos 75^{\circ}$ ) in terms of trigonometric ratios of the angle between  $0^{\circ}$  and  $45^{\circ}$ .

- 4. Let  $\triangle$  ABC ~  $\triangle$  DEF and their areas be respectively, 64 cm<sup>2</sup> and 121 cm<sup>2</sup>. If EF = 15.4 cm, find BC. (1)
- **5.** Find the distance between the points (a, b) and (-a, -b).

Find a rational number between  $\sqrt{2}$  and  $\sqrt{7}$ . 6.

OR

(1)

Write the number of zeroes in the end of a number whose prime factorization is  $2^2 \times 5^3 \times 3^2 \times 17$ .

## SECTION

How many multiples of 4 lie between 10 and 205? 7. OR

Determine the A.P. Whose third term is 16 and 7<sup>th</sup> term exceeds the 5<sup>th</sup> term by 12.

The point R divides the line segment AB, where A(-4, 0) and B(0, 6) such that  $AR = \frac{3}{4}AB$ . 8.

Find the coordinates of R.

- Use Euclid's division algorithm to find the HCF of 255 and 867 9.
- 10. Three different coins are tossed simultaneously. Find the probability of getting exactly one head. (2)
- 11. A card is drawn at random from a pack of 52 playing cards. Find the probability of drawing a card which is neither a spade nor a king. (2)
- **12.** Find the solution of the pair of equations:

$$\frac{3}{x} + \frac{8}{y} = -1; \frac{1}{x} - \frac{2}{y} = 2, x, y \neq 0$$

OR

 $\begin{cases} kx + 2y = 3\\ 3x + 6y = 10 \end{cases}$ Find the value (s) of k for which the pair of equations

has a unique solution.

- SECTION C
- 13. Prove that  $(3 + 2\sqrt{5})$  is an irrational number, given that  $\sqrt{5}$  is an irrational number.
- 14. A train travels a distance of 480 km at a uniform speed. If the speed had been 8 km/hr less, then it would have taken 3 hours more to cover the same distance. Find the usual speed of the train. (3)
- 15. If  $\alpha$  and  $\beta$  are the zeroes of the quadratic polynomial  $f(x) = x^2 4x + 3$ , find the value of  $(\alpha^4\beta^2 + \alpha^2\beta^4).$ (3)

**16.** Prove that :  $(\sin \theta + 1 + \cos \theta) (\sin \theta - 1 + \cos \theta)$ . sec  $\theta$  cosec  $\theta = 2$ 

(3)

(3)

(3)

 $\sqrt{\frac{\sec \overline{\theta} - 1}{\sec \theta + 1}} + \sqrt{\frac{\sec \theta + 1}{\sec \theta - 1}} = 2 \csc \theta$ 

17. In what ratio does the point P (-4, y) divide the line segment joining the points A (-6, 10) and B (3, -8)? Hence find the value of y.

OR

Find the value of p for which the points (-5, 1), (1, p) and (4, -2) are collinear.

(2)

(2)

(2)

(2)

#### **CBSE Solved Paper 2019**

- **18.** ABC is a right triangle in which  $\angle B = 90^{\circ}$ . If AB = 8 cm and BC = 6 cm, find the diameter of the circle inscribed in the triangle. (3)
- **19.** In figure 1, BL and CM are medians of a  $\triangle$  ABC right-angled at A. Prove that 4 (BL<sup>2</sup> + CM<sup>2</sup>) = 5 BC<sup>2</sup>.



#### OR

Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals. (3)

**20.** In figure 2, two concentric circles with centre O, have radii 21 cm and 42 cm. If  $\angle AOB = 60^{\circ}$ , find the area of the shaded region. (3)



**21.** A cone of height 24 cm and radius of base 6 cm is made up of modelling clay. A child reshapes it in the form of a sphere. Find the radius of the sphere and hence find the surface area of this sphere.

OR

(3)

(3)

A farmer connects a pipe of internal diameter 20 cm from a canal into a cylindrical tank in his field which is 10 m in diameter and 2 m deep. If water flows through the pipe at the rate of 3 km/hr, in how much time will the tank be filled?

22. Calculate the mode of the following distribution:

| Class:     | 10 - 15 | 15 - 20 | 20 - 25 | 25 - 30 | 30 - 35 |
|------------|---------|---------|---------|---------|---------|
| Frequency: | 4       | 7       | 20      | 8       | 1       |

SECTION D

23. Solve for x:

$$\frac{1}{2a+b+2x} = \frac{1}{2a} + \frac{1}{b} + \frac{1}{2x}; x \neq 0, x \neq \frac{-2a-b}{2}, a, b \neq 0$$
  
OR

The sum of the areas of two squares is  $640 \text{ m}^2$ . If the difference of their perimeters is 64 m, find the sides of the square.

**24.** If the sum of the first p terms of an A.P. is the same as the sum of its first q terms (where p  $\neq$  q), then show that the sum of first (p + q) terms is zero (4)

**25.** In 
$$\triangle$$
 ABC (Figure 3), AD  $\perp$  BC. Prove that

$$AC^2 = AB^2 + BC^2 - 2BC \times BD$$



**26.** A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.

OR

There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.

27. Construct a triangle with sides 5 cm 6 cm and 7 cm and then another triangle whose sides are  $\frac{3}{5}$  of the corresponding sides of the first triangle. (4)

**28.** Prove that :

 $\sin^8\theta - \cos^8\theta = (1 - 2\cos^2\theta) (1 - 2\sin^2\theta\cos^2\theta)$ 

- **29.** A container opened at the top and made up of a metal sheet, is in the form of a frustum of a cone of height 16 cm with radii of its lower and upper ends as 8 cm and 20 cm respectively. Find the cost of milk which can completely fill the container, at the rate of ₹ 50 per litre. Also find the cost of metal sheet used ot make the container, if it costs ₹ 10 per 100 cm<sup>2</sup> (Take  $\pi = 3.14$ )
- 30. Calculate the mean of the following frequency distribution :

| Class :    | 10 - 30  | 30 - 50 | 50 - 70 | 70 - 90 | 90-110 | 110 - 130 |  |
|------------|----------|---------|---------|---------|--------|-----------|--|
| Frequency: | <b>5</b> | 8       | 12      | 20      | 3      | 2         |  |
| OR         |          |         |         |         |        |           |  |

The following table gives production yield in kg per hectare of wheat of 100 farms of a village :

| Production yield | 40 - 45 | 45 - 50 | 50 - 55 | 55 - 60 | 60 - 65 | 65 - 70 |
|------------------|---------|---------|---------|---------|---------|---------|
| (kg/ hectare):   |         |         |         |         |         |         |
| Number of farms: | 4       | 6       | 16      | 20      | 30      | 24      |

Change the distribution to a 'more than type' distribution, and draw its ogive.

(4)

(4)

(4)

(4)